Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.399
Filtrar
1.
Urolithiasis ; 52(1): 52, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564033

RESUMO

Urolithiasis is a prevalent urological disorder that contributes significantly to global morbidity. This study aimed to assess the anti-urolithic effects of Cymbopogon proximus (Halfa Bar) and Petroselinum crispum (parsley) seed ethanolic extract /Gum Arabic (GA) emulsion, and its nanogel form against ethylene glycol (EG) and ammonium chloride (AC)-induced experimental urolithiasis in rats. Rats were divided into four groups: group 1 served as the normal control, group 2 received EG with AC in drinking water for 14 days to induce urolithiasis, groups 3 and 4 were orally administered emulsion (600 mg/kg/day) and nanogel emulsion (600 mg/kg/day) for 7 days, followed by co-administration with EG and AC in drinking water for 14 days. Urolithiatic rats exhibited a significant decrease in urinary excreted magnesium, and non-enzymic antioxidant glutathione and catalase activity. Moreover, they showed an increase in oxalate crystal numbers and various urolithiasis promoters, including excreted calcium, oxalate, phosphate, and uric acid. Renal function parameters and lipid peroxidation were intensified. Treatment with either emulsion or nanogel emulsion significantly elevated urolithiasis inhibitors, excreted magnesium, glutathione levels, and catalase activities. Reduced oxalate crystal numbers, urolithiasis promoters' excretion, renal function parameters, and lipid peroxidation while improving histopathological changes. Moreover, it decreased renal crystal deposition score and the expression of Tumer necrosis factor-α (TNF-α) and cleaved caspase-3. Notably, nanogel emulsion showed superior effects compared to the emulsion. Cymbopogon proximus (C. proximus) and Petroselinum crispum (P. crispum) seed ethanolic extracts/GA nanogel emulsion demonstrated protective effects against ethylene glycol induced renal stones by mitigating kidney dysfunction, oxalate crystal formation, and histological alterations.


Assuntos
Cymbopogon , Água Potável , Cálculos Renais , Polietilenoglicóis , Polietilenoimina , Urolitíase , Animais , Ratos , Petroselinum , Cloreto de Amônio , Goma Arábica , Emulsões , Catalase , Magnésio , Nanogéis , Urolitíase/induzido quimicamente , Urolitíase/tratamento farmacológico , Urolitíase/prevenção & controle , Sementes , Antioxidantes/uso terapêutico , Etanol , Glutationa , Oxalatos , Etilenoglicóis , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
2.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G483-G494, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573193

RESUMO

Fatty acid oxidation (FAO) releases the energy stored in fat to maintain basic biological processes. Dehydrogenation is a major way to oxidize fatty acids, which needs NAD+ to accept the released H+ from fatty acids and form NADH, which increases the ratio of NADH/NAD+ and consequently inhibits FAO leading to the deposition of fat in the liver, which is termed fatty liver or steatosis. Consumption of alcohol (ethanol) initiates simple steatosis that progresses to alcoholic steatohepatitis, which constitutes a spectrum of liver disorders called alcohol-associated liver disease (ALD). ALD is linked to ethanol metabolism. Ethanol is metabolized by alcohol dehydrogenase (ADH), microsomal ethanol oxidation system (MEOS), mainly cytochrome P450 2E1 (CYP2E1), and catalase. ADH also requires NAD+ to accept the released H+ from ethanol. Thus, ethanol metabolism by ADH leads to increased ratio of NADH/NAD+, which inhibits FAO and induces steatosis. CYP2E1 directly consumes reducing equivalent NADPH to oxidize ethanol, which generates reactive oxygen species (ROS) that lead to cellular injury. Catalase is mainly present in peroxisomes, where very long-chain fatty acids and branched-chain fatty acids are oxidized, and the resultant short-chain fatty acids will be further oxidized in mitochondria. Peroxisomal FAO generates hydrogen peroxide (H2O2), which is locally decomposed by catalase. When ethanol is present, catalase uses H2O2 to oxidize ethanol. In this review, we introduce FAO (including α-, ß-, and ω-oxidation) and ethanol metabolism (by ADH, CYP2E1, and catalase) followed by the interaction between FAO and ethanol metabolism in the liver and its pathophysiological significance.


Assuntos
Fígado Gorduroso , Hepatopatias Alcoólicas , Humanos , Catalase , NAD , Citocromo P-450 CYP2E1 , Peróxido de Hidrogênio , Etanol , Ácidos Graxos
3.
Environ Monit Assess ; 196(5): 449, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38609694

RESUMO

The work objective was to assess the ecological state of soils by changing the residual oil content and restoring catalase activity after remediation. The soils were selected in various ecosystems: a steppe of the Rostov Region (Haplic Chernozem), beech-hornbeam forests in the Republic of Adygea (Haplic Cambisols), and semi-desert of the Caspian province of the Republic of Kalmykia (Eutric Cambisols). Soil samples were polluted with oil at a concentration of 5% of the soil mass. After that, ameliorants (biochar, nitroammophoska, sodium humate, and Baikal EM-1) were introduced into the oil-contaminated soil. The catalase activity of Haplic Cambisols was stimulated only with the introduction of D2 biochar by 11% relative to the control, and in Haplic Chernozem, catalase was most stimulated with the addition of nitroammophoska D0.5 and D1 by 65% and 57% of the control, respectively. Nitroammophoska in all doses significantly stimulated the enzymatic activity, in Eutric Cambisols by four to six times compared to the control. The range of soil stability determined by catalase activity: Eutric Cambisols > Haplic Chernozem > Haplic Cambisols. Thus, it is most effective to apply biochar in doses of D and D2 and D0.5 and D nitroammophoska during the remediation of oil-contaminated Haplic Chernozem. For the remediation of Haplic Cambisols, it is effective to introduce biochar in dose of D2, and Eutric Cambisols-biochar and sodium humate in dose of D0.5 and nitroammophoska (all doses). The results of the study allow using catalase activity as a very informative and statistically significant diagnostical indicator of the health of oil-contaminated soils after remediation.


Assuntos
Carvão Vegetal , Ecossistema , Monitoramento Ambiental , Catalase , Compostos de Nitrogênio , Sódio , Solo , Substâncias Húmicas
4.
Clin Lab ; 70(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38623662

RESUMO

BACKGROUND: Cutaneous larva migrans (CLM) is a helminthic infection found in tropical areas. It is commonly seen in patients in contact with soil contaminated by cat and dog hookworm larvae. CLM manifests as an erythematous, serpiginous, and pruritic cutaneous eruption. We present a case of a 27-year-old female with a serpiginous lesion on the plantar surface of the right foot. METHODS AND RESULTS: The patient was prescribed Albendazole at 400 mg twice a day for three days. After treatment, the lesion and pruritus have decreased in severity. CONCLUSIONS: Hookworm-related CLM is diagnosed clinically based on the typical clinical presentation. Clinicians need to be aware of the possibility of hookworm-related CLM with a history of travel to tropical areas, especially walking barefoot.


Assuntos
Larva Migrans , Feminino , Cães , Humanos , Animais , Gatos , Adulto , Larva Migrans/diagnóstico , Larva Migrans/tratamento farmacológico , Albendazol/uso terapêutico , Viagem , Catalase/uso terapêutico
5.
Eur Rev Med Pharmacol Sci ; 28(6): 2538-2549, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38567613

RESUMO

OBJECTIVE: In the present study, the protective effects of adenosine triphosphate (ATP), Benidipine, and Lacidipine on potential kidney damage induced by 5-fluorouracil (5-FU) were investigated in rats. MATERIALS AND METHODS: Totally 48 rats were divided into 8 groups: healthy (HG), 5-FU (FUG), ATP+5-FU (AFU), Benidipine+5-FU (BFU), Lacidipine+5-FU (LFU), ATP+Benidipine+5-FU (ABFU), ATP+Lacidipine+5-FU (ALFU) and Benidipine+Lacidipine+5-FU (BLFU). In a 10-day period, ATP (4 mg/kg) was administered intraperitoneally, and Benidipine (4 mg/kg) and Lacidipine (4 mg/kg) were administered orally once a day. On days 1, 3, and 5, 5-FU (100 mg/kg) was administered intraperitoneally one hour after the drug was administered. Afterward, the rats were euthanized, and kidney tissues were removed. An analysis of malondialdehyde, total glutathione, superoxide dismutase, and catalase was performed on tissues, as well as a histopathological examination. A creatinine and blood urea nitrogen analysis were performed on blood samples. RESULTS: It was revealed that 5-FU decreased the amount of total glutathione, superoxide dismutase, and catalase activities in rat kidney tissues and increased malondialdehyde. Further, increased serum creatinine and blood urea nitrogen levels, as well as histopathological examination of kidney tissues, were found in the 5-FU group. ATP+Benidipine and ATP treatments were the most effective in preventing both biochemical and histopathological changes induced by 5-FU. A treatment with Benidipine improved biochemical and histopathologic data, but not to the same extent as a treatment with ATP+Benidipine and ATP. As a result of Lacidipine+ATP combination, 5-FU-induced biochemical changes in kidney tissue were partially inhibited, but the degree of histopathologic damage remained unchanged. Neither Benidipine+Lacidipine nor Lacidipine showed a protective effect on both biochemical changes and histopathologic damage. CONCLUSIONS: It may be possible to prevent nephrotoxicity by adding ATP + Benidipine or ATP to 5-FU treatment.


Assuntos
Di-Hidropiridinas , Fluoruracila , Nefropatias , Ratos , Animais , Fluoruracila/efeitos adversos , Rim/patologia , Catalase , Trifosfato de Adenosina , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Nefropatias/prevenção & controle , Glutationa , Superóxido Dismutase , Malondialdeído
6.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611786

RESUMO

Membrane-based sensors (MePSs) exhibit remarkable precision and sensitivity in detecting pressure changes. MePSs are commonly used to monitor catalytic reactions in solution, generating gas products crucial for signal amplification in bioassays. They also allow for catalyst quantification by indirectly measuring the pressure generated by the gaseous products. This is particularly interesting for detecting enzymes in biofluids associated with disease onset. To enhance the performance of a MePS, various structural factors influence membrane flexibility and response time, ultimately dictating the device's pressure sensitivity. In this study, we fabricated MePSs using polydimethylsiloxane (PDMS) and investigated how structural modifications affect the Young's modulus (E) and residual stress (σ0) of the membranes. These modifications have a direct impact on the sensors' sensitivity to pressure variations, observed as a function of the volume of the chamber (Σ) or of the mechanical properties of the membrane itself (S). MePSs exhibiting the highest sensitivities were then employed to detect catalyst quantities inducing the dismutation of hydrogen peroxide, producing dioxygen as a gaseous product. As a result, a catalase enzyme was successfully detected using these optimized MePSs, achieving a remarkable sensitivity of (22.7 ± 1.2) µm/nM and a limit of detection (LoD) of 396 pM.


Assuntos
Bioensaio , Gases , Catalase , Membranas , Catálise , Módulo de Elasticidade
7.
J Hazard Mater ; 470: 134212, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583205

RESUMO

Elevated levels of cadmium (Cd) have the ability to impede plant development. Aldo-keto reductases (AKRs) have been demonstrated in a number of plant species to improve tolerance to a variety of abiotic stresses by scavenging cytotoxic aldehydes; however, only a few AKRs have been identified to improve Cd tolerance. The OsAKR1 gene was extracted and identified from rice here. After being exposed to Cd, the expression of OsAKR1 dramatically rose in both roots and shoots, although more pronounced in roots. According to a subcellular localization experiment, the nucleus and cytoplasm are where OsAKR1 is primarily found. Mutants lacking OsAKR1 exhibited Cd sensitive phenotype than that of the wild-type (WT) Nipponbare (Nip), and osakr1 mutants exhibited reduced capacity to scavenge methylglyoxal (MG). Furthermore, osakr1 mutants exhibited considerably greater hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels, and increased catalase (CAT) activity in comparison to Nip. The expression of three isomeric forms of CAT was found to be considerably elevated in osakr1 mutants during Cd stress, as demonstrated by quantitative real-time PCR analysis, when compared to Nip. These results imply that OsAKR1 controlled rice's ability to withstand Cd by scavenging harmful aldehydes and turning on the reactive oxygen species (ROS) scavenging mechanism.


Assuntos
Aldo-Ceto Redutases , Cádmio , Oryza , Oryza/genética , Oryza/metabolismo , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Cádmio/toxicidade , Cádmio/metabolismo , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/metabolismo , Aldeídos/metabolismo , Catalase/metabolismo , Catalase/genética , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Malondialdeído/metabolismo , Estresse Fisiológico , Aldeído Pirúvico/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Inativação Metabólica
8.
J Colloid Interface Sci ; 666: 176-188, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593652

RESUMO

AIM: Ultraviolet B (UVB) radiation can compromise the functionality of the skin barrier through various mechanisms. We hypothesize that UVB induce photochemical alterations in the components of the outermost layer of the skin, known as the stratum corneum (SC), and modulate its antioxidative defense mechanisms. Catalase is a well-known antioxidative enzyme found in the SC where it acts to scavenge reactive oxygen species. However, a detailed characterization of acute UVB exposure on the activity of native catalase in the SC is lacking. Moreover, the effects of UVB irradiation on the molecular dynamics and organization of the SC keratin and lipid components remain unclear. Thus, the aim of this work is to characterize consequences of UVB exposure on the structural and antioxidative properties of catalase, as well as on the molecular and global properties of the SC matrix surrounding the enzyme. EXPERIMENTS: The effect of UVB irradiation on the catalase function is investigated by chronoamperometry with a skin covered oxygen electrode, which probes the activity of native catalase in the SC matrix. Circular dichroism is used to explore changes of the catalase secondary structure, and gel electrophoresis is used to detect fragmentation of the enzyme following the UVB exposure. UVB induced alterations of the SC molecular dynamics and structural features of the SC barrier, as well as its water sorption behavior, are investigated by a complementary set of techniques, including natural abundance 13C polarization transfer solid-state NMR, wide-angle X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and dynamic vapor sorption microbalance. FINDINGS: The findings show that UVB exposure impairs the antioxidative function of catalase by deactivating both native catalase in the SC matrix and lyophilized catalase. However, UVB radiation does not alter the secondary structure of the catalase nor induce any observable enzyme fragmentation, which otherwise could explain deactivation of its function. NMR measurements on SC samples show a subtle increase in the molecular mobility of the terminal segments of the SC lipids, accompanied by a decrease in the mobility of lipid chain trans-gauche conformers after high doses of UVB exposure. At the same time, the NMR data suggest increased rigidity of the polypeptide backbone of the keratin filaments, while the molecular mobility of amino acid residues in random coil domains of keratin remain unaffected by UVB irradiation. The FTIR data show a consistent decrease in absorbance associated with lipid bond vibrations, relative to the main protein bands. Collectively, the NMR and FTIR data suggest a small modification in the composition of fluid and solid phases of the SC lipid and protein components after UVB exposure, unrelated to the hydration capacity of the SC tissue. To conclude, UVB deactivation of catalase is anticipated to elevate oxidative stress of the SC, which, when coupled with subtle changes in the molecular characteristics of the SC, may compromise the overall skin health and elevate the likelihood of developing skin disorders.


Assuntos
Catalase , Raios Ultravioleta , Catalase/metabolismo , Catalase/química , Humanos , Epiderme/efeitos da radiação , Epiderme/metabolismo , Epiderme/enzimologia , Pele/efeitos da radiação , Pele/metabolismo , Pele/química , Queratinas/química , Queratinas/metabolismo
9.
Sci Rep ; 14(1): 8288, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594299

RESUMO

Hand dysfunction is a common observation after arteriovenous fistula (AVF) creation for hemodialysis access and has a variable clinical phenotype; however, the underlying mechanism responsible is unclear. Grip strength changes are a common metric used to assess AVF-associated hand disability but has previously been found to poorly correlate with the hemodynamic perturbations post-AVF placement implicating other tissue-level factors as drivers of hand outcomes. In this study, we sought to test if expression of a mitochondrial targeted catalase (mCAT) in skeletal muscle could reduce AVF-related limb dysfunction in mice with chronic kidney disease (CKD). Male and female C57BL/6J mice were fed an adenine-supplemented diet to induce CKD prior to placement of an AVF in the iliac vascular bundle. Adeno-associated virus was used to drive expression of either a green fluorescent protein (control) or mCAT using the muscle-specific human skeletal actin (HSA) gene promoter prior to AVF creation. As expected, the muscle-specific AAV-HSA-mCAT treatment did not impact blood urea nitrogen levels (P = 0.72), body weight (P = 0.84), or central hemodynamics including infrarenal aorta and inferior vena cava diameters (P > 0.18) or velocities (P > 0.38). Hindlimb perfusion recovery and muscle capillary densities were also unaffected by AAV-HSA-mCAT treatment. In contrast to muscle mass and myofiber size which were not different between groups, both absolute and specific muscle contractile forces measured via a nerve-mediated in-situ preparation were significantly greater in AAV-HSA-mCAT treated mice (P = 0.0012 and P = 0.0002). Morphological analysis of the post-synaptic neuromuscular junction uncovered greater acetylcholine receptor cluster areas (P = 0.0094) and lower fragmentation (P = 0.0010) in AAV-HSA-mCAT treated mice. Muscle mitochondrial oxidative phosphorylation was not different between groups, but AAV-HSA-mCAT treated mice had lower succinate-fueled mitochondrial hydrogen peroxide emission compared to AAV-HSA-GFP mice (P < 0.001). In summary, muscle-specific scavenging of mitochondrial hydrogen peroxide significantly improves neuromotor function in mice with CKD following AVF creation.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Falência Renal Crônica , Insuficiência Renal Crônica , Humanos , Masculino , Feminino , Animais , Camundongos , Catalase , Peróxido de Hidrogênio , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica/terapia , Diálise Renal , Força Muscular , Falência Renal Crônica/terapia
10.
Physiol Plant ; 176(2): e14294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38634335

RESUMO

In our comprehensive meta-analysis, we initially collected 177 publications focusing on the impact of melatonin on wheat. After meticulous screening, 40 published studies were selected, encompassing 558 observations for antioxidant enzymes, 312 for reactive oxygen species (ROS), and 92 for soluble biomolecules (soluble sugar and protein). This analysis revealed significant heterogeneity across studies (I2 > 99% for enzymes, ROS, and soluble biomolecules) and notable publication bias, indicating the complexity and variability in the research field. Melatonin application generally increased antioxidant enzyme activities [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)] in wheat, particularly under stress conditions, such as high temperature and heavy-metal exposure. Compared to control, melatonin application increased SOD, POD, CAT, and APX activities by 29.5, 16.96, 35.98, and 171.64%, respectively. Moreover, oxidative stress markers like hydrogen peroxide (H2O2), superoxide anion (O2), and malondialdehyde (MDA) decreased with melatonin by 23.73, 13.64, and 21.91%, respectively, suggesting a reduction in oxidative stress. The analysis also highlighted melatonin's role in improving carbohydrate metabolism and antioxidant defenses. Melatonin showed an overall increase of 12.77% in soluble sugar content, and 22.76% in glutathione peroxidase (GPX) activity compared to the control. However, the effects varied across different wheat varieties, environmental conditions, and application methods. Our study also uncovered complex relationships between antioxidant enzyme activities and H2O2 levels, indicating a nuanced regulatory role of melatonin in oxidative stress responses. Our meta-analysis demonstrates the significant role of melatonin in increasing wheat resilience to abiotic stressors, potentially through its regulatory impact on antioxidant defense systems and stress response.


Assuntos
Antioxidantes , Melatonina , Antioxidantes/metabolismo , Melatonina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Triticum/metabolismo , Peróxido de Hidrogênio/metabolismo , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Peroxidases/metabolismo , Peroxidase/metabolismo , Estresse Oxidativo , Açúcares/metabolismo , Malondialdeído/metabolismo
11.
J Biochem Mol Toxicol ; 38(4): e23712, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602238

RESUMO

Type 1 diabetes (T1D) is an insulin-dependent autoimmune condition. Short chain fatty acids (SCFAs) are volatile fatty acids with 1-6 carbon atoms that influence glucose storage in the body and can reduce appetite, potentially decreasing T1D risk. Alpha-lipoic acid (α-LA), a type of SCFA, has previously been used to treat diabetic neuropathy and inflammation due to its antioxidant properties. This study aims to assess α-LA's protective effects against T1D and associated kidney damage in rats induced with streptozotocin. Diabetic rats were treated with α-LA orally for 15 days, resulting in improved blood glucose (56% decrease) and kidney function markers like blood urea nitrogen, creatinine and uric acid. α-LA also showed significant antioxidant effects by decreasing LPO as well as improving activities of antioxidant enzymes like superoxide dismutase, catalase and glutathione-S transferase and alleviated kidney damage caused by diabetes. Docking experiments suggest that α-LA may regulate diabetes-related changes at the epigenetic level through interactions with the SIRT1 protein, indicating its potential as a target for future antidiabetic drug development.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Nefropatias , Ácido Tióctico , Ratos , Animais , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Antioxidantes/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratos Wistar , Peroxidação de Lipídeos , Catalase/metabolismo , Glicemia/metabolismo , Superóxido Dismutase/metabolismo , Estresse Oxidativo
12.
Huan Jing Ke Xue ; 45(5): 3037-3046, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629564

RESUMO

Through lettuce potting experiments, the effects of different types of biochar (apple branch, corn straw, and modified sorghum straw biochar with phosphoric acid modification) on lettuce growth under tetracycline (TC) and copper (Cu) co-pollution were investigated. The results showed that compared with those under CK, the addition of biochar treatment significantly increased the plant height, root length, shoot fresh weight, and root fresh weight of lettuce (P < 0.05). The addition of different biochars significantly increased the nitrate nitrogen, chlorophyll, and soluble protein content in lettuce physiological indicators to varying degrees, while also significantly decreasing the levels of malondialdehyde, proline content, and catalase activity. The effects of biochar on lettuce physiological indicators were consistent during both the seedling and mature stages. Compared with those in CK, the addition of biochar resulted in varying degrees of reduction in the TC and Cu contents of both the aboveground and underground parts of lettuce. The aboveground TC and Cu levels decreased by 2.49%-92.32% and 12.79%-36.47%, respectively. The underground TC and Cu levels decreased by 12.53%-55.64% and 22.41%-42.29%, respectively. Correlation analysis showed that nitrate nitrogen, chlorophyll, and soluble protein content of lettuce were negatively correlated with TC content, whereas malondialdehyde, proline content, and catalase activity were positively correlated with TC content. The resistance genes of lettuce were positively correlated with TC content (P < 0.05). In general, modified biochar was found to be more effective in improving lettuce growth quality and reducing pollutant accumulation compared to unmodified biochar, with modified sorghum straw biochar showing the best remediation effect.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Cobre , Alface , Poluentes Ambientais/análise , Solo , Catalase , Nitratos/análise , Antibacterianos , Tetraciclina/análise , Carvão Vegetal , Poluentes do Solo/análise , Clorofila/análise , Malondialdeído , Nitrogênio/análise , Prolina
13.
PeerJ ; 12: e17219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650645

RESUMO

Abiotic stress caused by soil salinization remains a major global challenge that threatens and severely impacts crop growth, causing yield reduction worldwide. In this study, we aim to investigate the damage of salt stress on the leaf physiology of two varieties of rice (Huanghuazhan, HHZ, and Xiangliangyou900, XLY900) and the regulatory mechanism of Hemin to maintain seedling growth under the imposed stress. Rice leaves were sprayed with 5.0 µmol·L-1 Hemin or 25.0 µmol·L-1 ZnPP (Zinc protoporphyrin IX) at the three leaf and one heart stage, followed by an imposed salt stress treatment regime (50.0 mmol·L-1 sodium chloride (NaCl)). The findings revealed that NaCl stress increased antioxidant enzymes activities and decreased the content of nonenzymatic antioxidants such as ascorbate (AsA) and glutathione (GSH). Furthermore, the content of osmoregulatory substances like soluble proteins and proline was raised. Moreover, salt stress increased reactive oxygen species (ROS) content in the leaves of the two varieties. However, spraying with Hemin increased the activities of antioxidants such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) and accelerated AsA-GSH cycling to remove excess ROS. In summary, Hemin reduced the effect of salt stress on the physiological characteristics of rice leaves due to improved antioxidant defense mechanisms that impeded lipid peroxidation. Thus, Hemin was demonstrated to lessen the damage caused by salt stress.


Assuntos
Antioxidantes , Glutationa , Hemina , Oryza , Estresse Salino , Oryza/efeitos dos fármacos , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Hemina/farmacologia , Antioxidantes/metabolismo , Estresse Salino/efeitos dos fármacos , Glutationa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Ascórbico/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Cloreto de Sódio/farmacologia , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo
14.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 493-498, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660857

RESUMO

OBJECTIVE: To investigate the relationship between clinical indicators of CRAB symptoms and antioxidant enzyme activity in patients with multiple myeloma (MM). METHODS: The activity of catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD) in the bone marrow supernatants of 44 patients with MM and 12 patients with non-malignant hematological diseases was detected by colorimetric assay, and then the differences in the activity of antioxidant enzymes between the two groups were compared. Furthermore, the relationship between the activity of antioxidant enzymes in the MM group and the levels of serum calcium, serum creatinine (Scr), hemoglobin (Hb), alkaline phosphatase (ALP) as well as bone lesions were analyzed. RESULTS: The antioxidant enzyme activity was lower in MM patients compared with the control group (P < 0.05). When the concentrations of serum calcium and ALP were higher than the normal levels, Hb was lower than 85 g/L, and there were multiple bone lesions, the activity of CAT, SOD and GPX was significantly declined (P < 0.05); When the concentration of Scr≥177 µmol/L, the activity of GPX was significantly declined (P < 0.05). Regression analyses showed that CAT, SOD and GPX were negatively correlated with serum calcium (r =-0.538, r =-0.456, r =-0.431), Scr (r =-0.342, r =-0.384, r =-0.463), and ALP (r =-0.551, r =-0.572, r =-0.482). CONCLUSION: The activity of antioxidant enzymes, including CAT, SOD and GPX, were decreased in patients with MM and they were negatively correlated with some clinical indicators of CRAB symptoms (such as serum calcium, Scr, and ALP), which suggests that promoting the activity of antioxidant enzymes may be beneficial to treat the CRAB symptoms of the patients with MM.


Assuntos
Fosfatase Alcalina , Antioxidantes , Cálcio , Catalase , Glutationa Peroxidase , Mieloma Múltiplo , Superóxido Dismutase , Humanos , Glutationa Peroxidase/sangue , Glutationa Peroxidase/metabolismo , Superóxido Dismutase/sangue , Superóxido Dismutase/metabolismo , Fosfatase Alcalina/sangue , Fosfatase Alcalina/metabolismo , Catalase/sangue , Catalase/metabolismo , Antioxidantes/metabolismo , Cálcio/sangue , Cálcio/metabolismo , Creatinina/sangue , Braquiúros , Medula Óssea
15.
Methods Mol Biol ; 2798: 213-221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38587746

RESUMO

Catalase, a pivotal enzyme in plant antioxidative defense mechanisms, plays a crucial role in detoxifying hydrogen peroxide, a reactive oxygen species (ROS). In this chapter, a comparative analysis of catalase activity was conducted using two distinct methodologies: spectrophotometry and non-denaturing polyacrylamide gel electrophoresis (PAGE). The spectrophotometric approach allowed the quantification of catalase activity by measuring the breakdown rate of hydrogen peroxide, while native PAGE enabled the separation and visualization of catalase isozymes, based on their native molecular weight and charge characteristics, and specific staining assay. Both methods provide valuable insights into catalase activity, offering complementary information on the enzyme's functional diversity and distribution within different plant tissues. This study integrates different techniques, previously described, to comprehensively elucidate the role of catalase in plant metabolism. Furthermore, it provides the possibility of obtaining a holistic understanding of antioxidant defense mechanisms by considering both total activity and isoenzyme distribution of catalase enzyme.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Catalase , Eletroforese em Gel de Poliacrilamida Nativa , Espectrofotometria
16.
Sci Rep ; 14(1): 6688, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509121

RESUMO

The aim of this study was to determine the levels of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and malondialdehyde (MDA) in patients with refractory epilepsy. Serum superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and malondialdehyde (MDA) levels were determined using the spectrophotometer method. Refractory epilepsy patients' serum superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and malondialdehyde (MDA) levels were statistically significant compared to the healthy control group (p < 0.05). In conclusion, superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and malondialdehyde (MDA) levels may play an important role in the etiopathogenesis of refractory epilepsy. This study was the first to investigate some parameters in refractory epilepsy disease.


Assuntos
Antioxidantes , Epilepsia Resistente a Medicamentos , Humanos , Antioxidantes/metabolismo , Catalase/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Glutationa/metabolismo , Malondialdeído , Glutationa Peroxidase/metabolismo
17.
Clin Toxicol (Phila) ; 62(2): 101-106, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38512019

RESUMO

BACKGROUND: Valproic acid has been widely used as an antiepileptic drug for several decades. Long-term valproic acid treatment is usually accompanied by liver injury. Although both men and women are susceptible to valproic acid-associated liver injury, hepatotoxicity differs between the sexes. However, the mechanisms underlying sex differences in valproic acid-associated liver injury remain unclear. METHODS: To explore potential risk factors for the susceptibility to valproic acid-associated liver injury, 231 pediatric patients with epilepsy (119 males, 112 females) were enrolled for laboratory and genetic analysis. RESULTS: Heterozygous genotype of catalase C-262T (P = 0.045) and the concentrations of glutathione (P = 0.002) and thiobarbituric acid-reactive substances (P = 0.011) were associated with the sex-specific susceptibility to valproic acid-associated liver injury. Meanwhile, logistic regression analysis revealed that carriers of heterozygous genotype of catalase C-262T (P = 0.010, odds ratio: 4.163; 95 percent confidence interval 1.400 - 7.378), glutathione concentration (P = 0.001, odds ratio: 2.421; 95 percent confidence interval 2.262 - 2.591) and male patients (P = 0.005, odds ratio: 1.344; 95% confidence interval 0.782 - 2.309) had a higher risk for valproic acid-associated liver injury. DISCUSSION: The mechanism underlying valproic acid-induced hepatotoxicity remains unclear. Additionally, factors that may contribute to the observed differences in the incidence of hepatotoxicity between males and females have yet to be defined. This study identifies several genetic factors that may predispose patients to valproic acid-associated hepatotoxicity. LIMITATIONS: This relatively small sample size of children with one ethnicity some of whom were taking other antiepileptics that are potentially hepatotoxic. CONCLUSION: Catalase C-262T genotype, glutathione concentration and gender (male) are potential risk factors for the susceptibility to valproic acid-associated liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Epilepsia , Humanos , Feminino , Masculino , Criança , Ácido Valproico/efeitos adversos , Caracteres Sexuais , Catalase/genética , Epilepsia/tratamento farmacológico , Glutationa , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética
18.
J Long Term Eff Med Implants ; 34(3): 9-12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505887

RESUMO

Peri-implant disease pathogenesis is similar to periodontal disease pathogenesis resulting in production of pro-inflammatory mediators. These mediators alter the redox balance leading to decrease in antioxidants, among which catalase is one of the enzymatic antioxidants. The aim of the study was to compare the levels of catalase in peri-implant health and disease. The present observational study was carried out from June 2022 to December 2022 in the Department of Implantology, Saveetha Dental College and Hospitals, Chennai, India. A total of 60 patients with peri-implant health (Group 1; n = 20), peri-implant mucositis (Group 2; n = 20) and peri-implantitis (Group 3; n = 20) were enrolled. Unstimulated salivary samples were collected and subjected to ELISA for catalase analysis. Catalase levels were then compared between the groups using ANOVA. The mean catalase level in peri-implant health, peri-implant mucositis, peri-implanti-tis were 25.07 ± 0.44 U/mL, 18.5 6 ± 0.65 U/mL, and 11.25 ± 0.76 U/mL respectively. The difference between the three groups were statistically significant (P < 0.05). Catalase level decreases with severity of peri-implant diseases. Therefore, catalase can be used as a diagnostic marker for peri-implant diseases.


Assuntos
Implantes Dentários , Mucosite , Peri-Implantite , Humanos , Peri-Implantite/etiologia , Peri-Implantite/patologia , Mucosite/complicações , Catalase , Índia , Implantes Dentários/efeitos adversos
19.
Vestn Otorinolaringol ; 89(1): 16-20, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38506020

RESUMO

The problem of chronic rhinitis (CR) remains unresolved in the world, while it has a negative impact on the quality of life of patients. Chronic forms of rhinitis suffer from 10-20% of the population, and its symptoms in epidemiological studies are noted in 40% of respondents. One of the leading mechanisms of disease occurrence is oxidative stress. OBJECTIVE: To study the state of the processes of lipid peroxidation and antioxidant protection in various types of chronic rhinitis. MATERIAL AND METHODS: The study included 50 patients with CR, of which 21 were with chronic allergic rhinitis (CALR), 20 with chronic vasomotor rhinitis (CVR), 9 with chronic atrophic rhinitis (CAR). The control group was represented by 50 practically healthy volunteers with no otorhinolaryngological complaints. The indicators of the LPO-AOD system in erythrocytes were evaluated by spectrophotometric methods. Statistical data processing was carried out using the Statistica 7.0 software package (StatSoft, USA). RESULTS: In all patients with CR in the blood erythrocytes, an increase in the level of malondialdehyde (MDA), a decrease in the activity of superoxide dismutase (SOD), catalase (CAT) relative to the control group was found. With CAR, the most pronounced changes are determined, with CVR - minimal. In patients with CR, lipid peroxidation is activated, MDA increases by 1.29 times, by 1.37 times with CAR, and by 1.31 times with CALR relative to normal values. The activity of the antioxidant system decreases, which reflects the classical variant of inhibition of antioxidant enzymes: SOD is reduced by 1.08 times in CAR, by 1.07 times in CALR, and 1.04 times in CVR, CAT in CAR is reduced by 1.02 times; CALR by 1.02 times, with CVR by 1.01 times. The coefficient of oxidative stress with CVR is 1.36, with CAR is 1.5, with CALR is 1.42. CONCLUSION: In CR, the predominance of pro-oxidant processes over antioxidant ones is revealed, a slight oxidative stress is detected, probably due to the presence of hypoxia and intoxication syndrome. An in-depth study of lipid peroxidation processes and factors of the antioxidant defense system, depending on the CR phenotype, can be used to correct therapy and prevent exacerbations, as well as markers of progression and prognosis of chronic rhinitis.


Assuntos
Antioxidantes , Rinite Alérgica , Humanos , Peroxidação de Lipídeos/fisiologia , Qualidade de Vida , Glutationa Peroxidase/metabolismo , Catalase/metabolismo , Estresse Oxidativo/fisiologia , Superóxido Dismutase/metabolismo , Rinite Alérgica/diagnóstico , Malondialdeído
20.
Sci Rep ; 14(1): 7114, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531994

RESUMO

The growth and productivity of maize are severely affected by soil salinity. The crucial determinants for the future performance of plants are productive for seed germination and seedling establishment; however, both stages are liable to soil salinity. For grain, maize is an economically significant crop sensitive to abiotic stresses. However, little is known about defense responses by the salinity-induced antioxidant and oxidative stress in maize. In our work, the commercially available maize variety Raka-Poshi was grown in pots for 30 days under greenhouse conditions. To evaluate the salt-induced oxidative/antioxidant responses in maize for salt stress 0, 25, 50, 75, 100 and 150 mM concentrations, treatments were provided using sodium chloride (NaCl). All the biochemical indices were calculated under all NaCl concentrations, while drought was induced by up to 50% irrigation water. After 30 days of seed germination, the maize leaves were collected for the measurement of lipid peroxidase or malondialdehyde (MDA), glutathione reductase (GR), guaiacol peroxidase (GPOD), hydrogen peroxide (H2O2), superoxide dismutase (SOD), lipoxygenase (LOX), catalase (CAT), ascorbate peroxidase (APOD) and glutathione-S-transferase (GST). The results revealed a 47% reduction under 150 mM NaCl and 50% drought stress conditions. The results have shown that the successive increase of NaCl concentrations and drought caused an increase in catalase production. With successive increase in NaCl concentration and drought stress, lower levels of H2O2, SOD, and MDA were detected in maize leaves. The results regarding the morphology of maize seedlings indicated a successive reduction in the root length and shoot length under applications of salt and drought stress, while root-to-shoot weights were found to be increased under drought stress and decreased under salt stress conditions During gene expression analysis collectively indicate that, under drought stress conditions, the expression levels of all nine mentioned enzyme-related genes were consistently downregulated.


Assuntos
Antioxidantes , Zea mays , Antioxidantes/metabolismo , Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Cloreto de Sódio/metabolismo , Estresse Fisiológico , Plântula , Superóxido Dismutase/metabolismo , Solo , Mecanismos de Defesa , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...